Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
Ophthalmic Genet ; : 1-6, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691016

RESUMO

BACKGROUND: GAPO syndrome is a rare autosomal recessive disorder characterized by the acronym of growth retardation, alopecia, pseudo-anodontia and progressive optic atrophy. While the genetic alteration of the ANTXR1 gene has been known for its cause, the full range of its clinical and genetic manifestations is not well explored due to the syndrome's extreme rarity. MATERIALS/METHODS: We report two children born to a non-consanguineous parent in India with classical features of GAPO syndrome. The whole exome sequencing analysis (WES) was performed in both siblings, and the parent's genetic and clinical status was determined. The identified variation was characterized in silico using homology-based protein modelling. RESULTS: In WES analysis, a homozygous ANTXR1 gene indel variant c. 151_152 + 2delAAGT (p.Lys51fs) was identified in both siblings. The parents were identified as the carriers of the ANTXR1 variant. Additionally, they also displayed mild GAPO-related facial and glaucomatous features. In silico analysis and homology-based ANTXR1 protein structure illustrate a frameshift and the subsequent premature truncation of the protein. CONCLUSIONS: Our reports contribute to the comprehension of GAPO syndrome within the Indian context describing an ANTXR1 novel variant causing premature protein truncation. WES-based genetic testing can significantly aid in expertly diagnosing GAPO syndrome. In the present case scenario, a variable penetrance of ANTXR1 variation was acknowledged as the carrier parents also had a mild degree of GAPO-related features. Future reports that include parental clinical diagnosis can offer further insights in this context.

2.
Cancer Rep (Hoboken) ; 7(5): e2009, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717954

RESUMO

Breast cancer (BC) is the most widespread cancer worldwide. Over 2 million new cases of BC were identified in 2020 alone. Despite previous studies, the lack of specific biomarkers and signaling pathways implicated in BC impedes the development of potential therapeutic strategies. We employed several RNAseq datasets to extract differentially expressed genes (DEGs) based on the intersection of all datasets, followed by protein-protein interaction network construction. Using the shared DEGs, we also identified significant gene ontology (GO) and KEGG pathways to understand the signaling pathways involved in BC development. A molecular docking simulation was performed to explore potential interactions between proteins and drugs. The intersection of the four datasets resulted in 146 DEGs common, including AURKB, PLK1, TTK, UBE2C, CDCA8, KIF15, and CDC45 that are significant hub-proteins associated with breastcancer development. These genes are crucial in complement activation, mitotic cytokinesis, aging, and cancer development. We identified key microRNAs (i.e., hsa-miR-16-5p, hsa-miR-1-3p, hsa-miR-147a, hsa-miR-195-5p, and hsa-miR-155-5p) that are associated with aggressive tumor behavior and poor clinical outcomes in BC. Notable transcription factors (TFs) were FOXC1, GATA2, FOXL1, ZNF24 and NR2F6. These biomarkers are involved in regulating cancer cell proliferation, invasion, and migration. Finally, molecular docking suggested Hesperidin, 2-amino-isoxazolopyridines, and NMS-P715 as potential lead compounds against BC progression. We believe that these findings will provide important insight into the BC progression as well as potential biomarkers and drug candidates for therapeutic development.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mapas de Interação de Proteínas , MicroRNAs/genética , Transcriptoma , Redes Reguladoras de Genes , Transdução de Sinais/efeitos dos fármacos
3.
BMC Immunol ; 25(1): 27, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706005

RESUMO

BACKGROUND: Due to antibiotic resistance, the Klebsiella genus is linked to morbidity and death, necessitating the development of a universally protective vaccine against Klebsiella pathogens. METHODS: Core sequence analysis prioritized non-redundant host molecules and expected lipid bilayer peptides from fully sequenced Klebsiella genomes. These proteins were refined to identify epitopes, examining their immunogenicity, toxicity, solubility, and interaction with MHC alleles. Epitopes were linked to CPG ODN C274 via EAAAK, HEYGAEALERAG, and GGGS linkers to enhance immunological responses. The vaccine's tertiary structure was modelled and docked with MHC-I and MHC-II. RESULTS: Fifty-five proteins were recognized in the Vaxign collection as having remarkable features. Twenty-three proteins with potential pathogenicity were then identified. Eight options for vaccines emerged after the immunogenicity of proteins was examined. The best antigens were three proteins: MrkD, Iron-regulated lipid membrane polypeptides, and RmpA. These compounds were selected for their sensitivity. The structural protein sequences of K. pneumoniae were utilized to identify seven CTL epitopes, seven HTL epitopes, and seven LBL epitopes, respectively. The produced immunization displayed a stable contact with the receptors, based on molecular dynamic simulations lasting 250 nanoseconds. Intermolecular binding free energies also indicated the dominance of the van der Waals and electrostatic energies. CONCLUSION: In summary, the results of this study might help scientists develop a novel vaccine to prevent K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/imunologia , Vacinas Bacterianas/imunologia , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/prevenção & controle , Animais , Epitopos de Linfócito T/imunologia , Camundongos , Humanos , Simulação de Dinâmica Molecular , Antígenos de Bactérias/imunologia , Oligodesoxirribonucleotídeos/imunologia , Epitopos/imunologia , Simulação de Acoplamento Molecular
4.
BMC Complement Med Ther ; 24(1): 157, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609946

RESUMO

BACKGROUND: Oral bacterial infections are difficult to treat due to emergence of resistance against antibiotic therapy. Essential oils are considered emerging alternate therapy against bacterial infections and biofilms. We investigated Citrus bergemia flower essential oil against oral pathogens. METHODS: The essential oil was analsyed using Gas Chromatography(GC-MS), in silico investigations, antioxidant, antimicrobial, antibiofilm and antiquorum sensing assays. RESULTS: Gas Chromatography analysis confirmed presence of 17 compounds including 1,6-Octadien-3-ol,3,7-dimethyl, 48.17%), l-limonene (22.03%) and p-menth-1-ol, 8-ol (7.31%) as major components. In silico analysis showed compliance of all tested major components with Lipinski's rule, Bioavailability and antimicrobial activity using PASS (prediction of activity spectrum of substances). Molecular docking with transcriptional regulators 3QP5, 5OE3, 4B2O and 3Q3D revealed strong interaction of all tested compounds except 1,6-Octadien-3-ol,3,7-dimethyl. All tested compounds presented significant inhibition of DPPH (2,2-diphenyl-1-picrylhydrazyl) (IC50 0.65 mg/mL), H2O2 (hydrogen peroxide) (63.5%) and high FRAP (ferrous reducing antioxidant power) value (239.01 µg). In antimicrobial screening a significant activity (MIC 0.125 mg/mL) against Bacillus paramycoides and Bacillus chungangensis was observed. Likewise a strong antibiofilm (52.1 - 69.5%) and anti-QS (quorum sensing) (4-16 mm) activity was recorded in a dose dependent manner. CONCLUSION: It was therefore concluded that C. bergemia essential oil posess strong antioxidant, antimicrobial and antibiofilm activities against tested oral pathogens.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Citrus , Óleos Voláteis , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologia , Flores
5.
Cureus ; 16(3): e56664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646326

RESUMO

Background A putative tumor suppressor gene called HIC1 (hypermethylated in cancer) is situated at 17p13.3, a locus where the allelic loss occurs often in human malignancies, including breast cancer. Hypermethylated in cancer 1 protein is a protein that in humans is encoded by the HIC1 gene and it's a Homo sapiens (Human). This gene functions as a growth regulatory and tumor repressor gene. The molecular function of HIC1 gene includes DNA-binding transcription factor activity, sequence-specific DNA binding, DNA binding, histone deacetylase binding, protein binding, metal ion binding, nucleic acid binding, DNA-binding transcription repressor activity, RNA polymerase II-specific, DNA-binding transcription factor activity, RNA polymerase II-specific. The biological process of HIC1 gene includes multicellular organism development, negative regulation of Wnt signaling pathway, positive regulation of DNA damage response, signal transduction by p53 class mediator regulation of transcription, DNA-templated, negative regulation of transcription by RNA polymerase II, Wnt signaling pathway, transcription, DNA-templated, intrinsic apoptotic signaling pathway in response to DNA damage, cellular response to DNA damage stimulus. The study aimed to predict the stability and structure of the protein that will arise from single nucleotide polymorphisms (SNPs) in the human HIC1 gene. Methodology To investigate the possible negative effects associated with these SNPs, bioinformatic analysis is typically essential. The following tools were employed for forecasting harmful SNPs: scale-invariant feature transform (SIFT), Protein Analysis Through Evolutionary Relationships (PANTHER), nonsynonymous SNP by Protein Variation Effect Analyzer (PROVEAN), and nonsynonymous SNP by Single Nucleotide Polymorphism Annotation Platform (SNAP). Results The present study identified a total of 36 SNPs using the SIFT approach, which were shown to have functional significance. Twenty-six were determined to be tolerable, whereas 10 were shown to be detrimental. Out of 20 SNPs, seven (P370A, P646S, R654P, A476T, S400S, D666N, D7V) SNPs were predicted as "Possibly damaging" and seven (L9F, G468R, G490R, L482R, S12W, G489D, S12P) were identified as "probably benign", and six (R725G, G620S, A56V, E463D, D394N, L338V) were identified as "probably damaging" according to the predictions made by PANTHER tools. The majority of the pixels on the strip were red, indicating that the gene changes may have dangerous consequences. These results highlight the need for more research to fully comprehend how these mutations affect the hic1 protein's function, which is essential for the emergence of different types of cancer. Conclusion The current research has provided us with essential information about how SNPs might be used as a diagnostic marker for cancer, given that SNPs may be candidates for cellular changes caused by mutations linked to cancer.

6.
Heliyon ; 10(7): e28408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560111

RESUMO

The probiotic potential of Lactiplantibacillus pentosus CF-6HA isolated from traditionally fermented Aloreña table olives was analyzed in vitro and in silico. Results obtained suggested that this strain can be catalogued as "talented" bacterium exhibiting bacteriocin production with antimicrobial activity against human/animal and plant pathogens, such as Pseudomonas syringae and Verticillium dahliae. The robustness, safety and probiotic potential of L. pentosus CF-6HA was confirmed by in silico analysis. In addition, a plethora of coding genes for defense and adaptability to different life styles besides functional properties were identified. In this sense, defense mechanisms of L. pentosus CF-6HA consist of 17 ISI elements, 98 transposases and 13 temperate phage regions as well as a CRISPR (clustered regularly interspaced short palindromic repeats)/cas system. Moreover, the functionality of this strain was confirmed by the presence of genes coding for secondary metabolites, exopolysaccharides and other bioactive molecules. Finally, we demonstrated the ability of L. pentosus CF-6HA to biotransform selenite to nanoparticles (SeNPs) highlighting its potential role in selenium bioremediation to be exploited in foods, agriculture and the environment; but also for the bio-enrichment of fermented foods with selenium.

7.
Vet Immunol Immunopathol ; 272: 110756, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38657357

RESUMO

Bordetella bronchiseptica is a pathogen causing respiratory infections in mammals. With the improving understanding of companion animals' welfare, addressing the side effects of bordetella vaccine gains importance in dogs. Studies on diverse subunit vaccines are actively pursued in humans to safely and effectively control bordetellosis. Therefore, our objective was to develop a canine bordetella vaccine inspired by human vaccine development. We evaluated the immunogenicity of the two bacterial components: the outer membrane proteins (OMPs) and the dermonecrotic toxin (DNT) from a canine isolate of B. bronchiseptica. In-silico analysis identified eight domains of DNT, and Domain 3 was selected as the most promising antigen candidate. Additionally, the OMPs were extracted and examined using SDS-PAGE and Western blot analysis. The distinct immunological characteristic of OMPs and DNT-3 were examined individually and in combination. Gene expression and cytokine production were also evaluated in DH82 cells after stimulation with those antigens. Treatment with OMPs resulted in higher level of Th1 related cytokines, while DNT-3 induced a predominant response associated with Th17 and Th2 in the cytokine production. Synergistic effects were observed exclusively on IL-23, indicating increase of a potential risk of side effects when OMPs and DNT act together. These findings provide valuable insights into the reactogenicity of conventional Bordetella vaccines. Further, the presented preclinical data in this study offer an alternative method of the development for an optimal next-generation Bordetella vaccine for companion animals and humans, replacing the acellular vaccines containing both toxin and protein components.

8.
Front Chem ; 12: 1342434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595701

RESUMO

Introduction: The protein folding process is very sensitive to environmental conditions. Many possibilities in the form of numerous pathways for this process can-if an incorrect one is chosen-lead to the creation of forms described as misfolded. The aqueous environment is the natural one for the protein folding process. Nonetheless, other factors such as the cell membrane and the presence of specific molecules (chaperones) affect this process, ensuring the correct expected structural form to guarantee biological activity. All these factors can be considered components of the external force field for this process. Methods: The fuzzy oil drop-modified (FOD-M) model makes possible the quantitative evaluation of the modification of the external field, treating the aqueous environment as a reference. The FOD-M model (tested on membrane proteins) includes the component modifying the water environment, allowing the assessment of the external force field generated by prefoldin. Results: In this work, prefoldin was treated as the provider of a specific external force field for actin and tubulin. The discussed model can be applied to any folding process simulation, taking into account the changed external conditions. Hence, it can help simulate the in silico protein folding process under defined external conditions determined by the respective external force field. In this work, the structures of prefoldin and protein folded with the participation of prefoldin were analyzed. Discussion: Thus, the role of prefoldin can be treated as a provider of an external field comparable to other environmental factors affecting the protein folding process.

9.
Heliyon ; 10(6): e27657, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510042

RESUMO

Lumpy skin disease virus (LSDV) belongs to Poxviridae family. This virus possesses various proteins which impart potential functions to it including assembly of newly synthesized viruses in the replication cycle and forming their structure. LSDV132 protein is also one of such proteins. Its key characteristics were unknown because, no any relevant study was reported about it. This study aimed to investigate its characteristic features and essential functions using several bioinformatics techniques. These analyses included physiochemical characterization and exploring the crucial functional and structural perspectives. Upon analysis of the physiochemical properties, the instability index was computed to be 30.89% which proposed LSDV132 protein to be a stable protein. Afterwards, the phosphorylation sites were explored. Several sites were found in this regard which led to the hypothesis that it might be involved in the regulation of apoptosis and cell signaling, among other cellular processes. Furthermore, the KEGG analysis and the analysis of protein family classification confirmed that the LSDV132 protein possessed Poxvirus-BCL-2-like motifs, indicating that it might be responsible in modulating the apoptosis of host cells. This crucial finding suggested that the protein under study possessed BCL-2-like features. Proceeding this very important finding, the molecular docking analysis was performed. In this context, various viral BCL-2 inhibitors were retrieved from the ChEMBL database for docking purpose. The docking results revealed that pelcitoclax exhibited best docking scores i.e., -9.1841 kcal/mol, among all of the other docked complexes. This fact signified that this compound might serve as an inhibitor of LSDV132 protein.

10.
Chemosphere ; 353: 141529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428534

RESUMO

An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 µg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Masculino , Fotólise , Testes de Toxicidade/métodos , Peixe-Zebra , Cefepima/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem
11.
Sci Rep ; 14(1): 6785, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514665

RESUMO

Familial hypercholesterolemia (FH) is a genetic disease characterized by elevated LDL-C levels. In this study, two FH probands and 9 family members from two families from northeastern Thailand were tested for LDLR, APOB, and PCSK9 variants by whole-exome sequencing, PCR-HRM, and Sanger sequencing. In silico analysis of LDLR was performed to analyse its structure‒function relationship. A novel variant of LDLR (c.535_536delinsAT, p.Glu179Met) was detected in proband 1 and proband 2 in homozygous and heterozygous forms, respectively. A total of 6 of 9 family members were heterozygous for LDLR p.Glu179Met variant. Compared with proband 2, proband 1 had higher baseline TC and LDL-C levels and a poorer response to lipid-lowering therapy combined with a PCSK9 inhibitor. Multiple sequence alignment showed that LDLR p.Glu179Met was located in a fully conserved region. Homology modelling demonstrated that LDLR p.Glu179Met variant lost one H-bond and a negative charge. In conclusion, a novel LDLR p.Glu179Met variant was identified for the first time in Thai FH patients. This was also the first report of homozygous FH patient in Thailand. Our findings may expand the knowledge of FH-causing variants in Thai population, which is beneficial for cascade screening, genetic counselling, and FH management to prevent coronary artery disease.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Mutação , Fenótipo , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Tailândia
12.
Genes (Basel) ; 15(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540399

RESUMO

In the rapidly advancing field of bioinformatics, the development and application of computational tools to predict the effects of single nucleotide variants (SNVs) are shedding light on the molecular mechanisms underlying disorders. Also, they hold promise for guiding therapeutic interventions and personalized medicine strategies in the future. A comprehensive understanding of the impact of SNVs in the SERPINA1 gene on alpha-1 antitrypsin (AAT) protein structure and function requires integrating bioinformatic approaches. Here, we provide a guide for clinicians to navigate through the field of computational analyses which can be applied to describe a novel genetic variant. Predicting the clinical significance of SERPINA1 variation allows clinicians to tailor treatment options for individuals with alpha-1 antitrypsin deficiency (AATD) and related conditions, ultimately improving the patient's outcome and quality of life. This paper explores the various bioinformatic methodologies and cutting-edge approaches dedicated to the assessment of molecular variants of genes and their product proteins using SERPINA1 and AAT as an example.


Assuntos
Qualidade de Vida , Deficiência de alfa 1-Antitripsina , Humanos , Deficiência de alfa 1-Antitripsina/genética , Alelos , alfa 1-Antitripsina/genética
13.
Plant Physiol Biochem ; 208: 108539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513515

RESUMO

Pinellia ternata, a valuable Chinese herb, suffers yield reduction due to "sprout tumble" under high temperatures. However, the mechanisms underlying its high-temperature stress remain poorly understood. NAM, ATAF1/2, and CUC2 (NAC) transcription factors regulate plant tissue growth and abiotic stress. Hence, there has been no comprehensive research conducted on NAC transcription factors in P. ternata. We identified 98 PtNAC genes unevenly distributed across 13 chromosomes, grouped into 15 families via phylogenetic analysis. Gene expression analysis revealed diverse expression patterns of PtNAC genes in different tissue types. Further studies revealed that PtNAC5/7/17/35/43/47/57/66/86 genes were highly expressed in various tissues of P. ternata and induced by heat stress, among which PtNAC66 was up-regulated at the highest folds induced by heat temperature. PtNAC66 is a nuclear protein that can selectively bind to the cis-responsive region NACRS but lacks the ability to activate transcription in yeast. For further research, PtNAC66 was cloned and transgenic Arabidopsis was obtained. PtNAC66 overexpression increased high-temperature tolerance compared to wild-type plants. Transcriptome profiling demonstrated that overexpression of PtNAC66 led to significant modification of genes responsible for regulating binding, catalytic activity, transcription regulator activity and transporter activity response genes. Additionally, PtNAC66 was found to bind the promoters of CYP707A3, MYB102 and NAC055, respectively, and inhibited their expression, affecting the high-temperature stress response in Arabidopsis. Our research established the foundation for functional studies of PtNAC genes in response to high-temperature forcing by characterizing the P. ternata NAC gene family and examining the biological role of PtNAC66 in plant high-temperature tolerance.


Assuntos
Arabidopsis , Pinellia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Pinellia/genética , Pinellia/metabolismo , Temperatura , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
14.
Pathol Res Pract ; 256: 155228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460244

RESUMO

BACKGROUND: Situs inversus totalis (SIT) is a rare autosomal recessive inheritance at which the abdomino-thoracic organs are mirror-image transposed. Germ cell tumors originate from the primitive germ cell of the ovary and testis. CASE REPORT PRESENTATION: A rare association between malignant ovarian mixed germ cell tumor and SIT was presented in a 32-years-old Egyptian female, successfully treated with laparoscopic total abdominal hysterectomy, right salpingo-oophorectomy, and retroperitoneal lymphadenectomy (laparoscopic retroperitoneal lymphadenectomy) of both sides. This case is considered the first of its kind worldwide. CONCLUSION: SIT may be associated with malignant ovarian germ cell tumors. Surgical intervention could be done laparoscopically.


Assuntos
Laparoscopia , Situs Inversus , Masculino , Humanos , Feminino , Adulto , Situs Inversus/complicações , Biópsia , Excisão de Linfonodo , Laparoscopia/métodos
15.
BMC Chem ; 18(1): 60, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555456

RESUMO

Phytochemical investigation of Key lime (Citrus aurantifolia L., F. Rutaceae) peels afforded six metabolites, known as methyl isolimonate acetate (1), limonin (2), luteolin (3), 3`-hydroxygenkwanin (4), myricetin (5), and europetin (6). The structures of the isolated compounds were assigned by 1D NMR. In the case of limonin (2), further 1- and 2D NMR experiments were done to further confirm the structure of this most active metabolite. The antiplasmodial properties of the obtained compounds against the pathogenic NF54 strain of Plasmodium falciparum were assessed in vitro. According to antiplasmodial screening, only limonin (2), luteolin (3), and myricetin (5) were effective (IC50 values of 0.2, 3.4, and 5.9 µM, respectively). We explored the antiplasmodial potential of phytochemicals from C. aurantifolia peels using a stepwise in silico-based analysis. We first identified the unique proteins of P. falciparum that have no homolog in the human proteome, and then performed inverse docking, ΔGBinding calculation, and molecular dynamics simulation to predict the binding affinity and stability of the isolated compounds with these proteins. We found that limonin (2), luteolin (3), and myricetin (5) could interact with 20S a proteasome, choline kinase, and phosphocholine cytidylyltransferase, respectively, which are important enzymes for the survival and growth of the parasite. According to our findings, phytochemicals from C. aurantifolia peels can be considered as potential leads for the development of new safe and effective antiplasmodial agents.

16.
Ecotoxicol Environ Saf ; 274: 116211, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479317

RESUMO

The prevalent use of pesticides, including pirimiphos-methyl (PPM) and bifenthrin (BF), poses a serious health risk, particularly to workers who encounter these chemicals daily. Despite the recognized hepatotoxic effects, the specific molecular mechanisms, especially those involving miRNAs in liver damage caused by PPM and BF, are not fully elucidated. Prior studies have not exhaustively analyzed the hepatic miRNA-target gene dynamics following exposure to these pesticides; thus, this research aims to fill that gap through an extensive miRNA analysis to discern their regulation in PPM or BF-induced hepatic toxicity. In this study, male Sprague-Dawley rats were exposed to BF or PPM for 28 days through oral gavage, simulating the chronic exposure faced by humans. We conducted a thorough assessment of the hepatotoxicity induced by PPM and BF, employing multiple evaluation levels, including histological analysis, liver enzyme measurements, and real-time PCR to detect changes in hepatic miRNA-target gene expressions. Additionally, we utilized DIANA-miRPath prediction tools to delineate the functional implications of these hepatic miRNA target genes. Our findings reveal a significant modulation in the expression of rno-miR-155-5p and rno-miR-122-5p, along with their target genes, following PPM and BF treatment. In contrast, rno-miR-21-5p levels remained unaltered. These observations suggest potential utility of these specific hepatic miRNAs as biomarkers for liver injury resulting from pesticide exposure. Subsequent GO enrichment analysis linked target genes to functions like molecular activity, protein binding, and cellular processes. Additionally, KEGG pathway analysis showed these genes, influenced by varied miRNA expressions, play significant roles in metabolic and signaling pathways In conclusion, this study enhances our comprehension of the biological roles of miRNAs in hepatic toxicity induced by PPM and BF. The insights gained here not only shed light on molecular mechanisms but also open avenues for considering these miRNAs as potential diagnostic biomarkers in conditions of pesticide-induced hepatotoxicity, thereby guiding future therapeutic strategies.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , MicroRNAs , Praguicidas , Piretrinas , Humanos , Ratos , Animais , Masculino , Praguicidas/toxicidade , Ratos Sprague-Dawley , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Biologia Computacional , Doença Hepática Induzida por Substâncias e Drogas/genética
17.
3 Biotech ; 14(4): 105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464616

RESUMO

Antimicrobial peptides (AMPs) with potent anti-listerial activity were characterized from a novel marine Bacillus velezensis FTL7. A Box-Behnken statistical experimental design was used to study the combined impact of culture conditions on the production of AMPs by B. velezensis FTL7. The conditions optimized by statistical experimental design were 34.5 °C incubation temperature, 23 h incubation time, and 7.6 initial pH of the medium. AMP purification was performed by ammonium sulphate fractionation and butanol extraction followed by reversed-phase C18 solid-phase extraction. Tricine-SDS-PAGE analysis revealed a peptide with a molecular mass of ~ 6.5 kDa in an active AMPs fraction, whereas the mass spectrometry (MS) analysis showed the presence of AMPs in the mass range of 1-1.6 kDa, along with a 6.5 kDa peptide. Both MS and MS/MS analysis confirmed the AMPs as lipopeptides including surfactin, fengycins and iturin A and a circular bacteriocin amylocyclicin. The minimum inhibitory concentration of these AMPs against L. monocytogenes Scott A was 2.5 µg/mL. Further, the in-silico docking studies showed that the AMPs from B. velezensis FTL7 have high binding energy and stable binding patterns towards L. monocytogenes target proteins. Thus, this new combination of AMPs can serve as an effective food bio-preservative. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03944-5.

18.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38539909

RESUMO

This study explored the glucosinolate (GSL) content in Brassica plants and utilized in silico analysis approach to assess their antioxidant capabilities. GSLs, present abundantly in Brassica vegetables, offer potential health advantages, including antioxidant effects. Employing Ultra-Performance Liquid Chromatography (UPLC) coupled with tandem mass spectrometry (MS/MS), major GSLs were identified in 89 accessions from diverse species and subspecies. Statistical analysis and principal component analysis unveiled significant GSL variation and potential correlations among the Brassica germplasms. This study unveils the dominance of aliphatic GSLs over aromatic and indolyl compounds in all the accessions. Notably, Gluconapin (GNA) (33,049.23 µmol·kg-1 DW), Glucobrassicanapin (GBN) (9803.82 µmol·kg-1 DW), Progoitrin (PRO) (12,780.48 µmol·kg-1 DW) and Sinigrin (SIN) (14,872.93 µmol·kg-1 DW) were the most abundant compounds across the analyzed accessions. Moreover, in silico docking studies predicted promising antioxidant activity by evaluating the interactions of each GSL with antioxidant enzymes. Specifically, Sinigrin and Gluconapin exhibited a notably weaker influence on antioxidant enzymes. This provides key insights into the antioxidant potential of Brassica germplasm and highlights the importance of in silico analysis for evaluating bioactive properties. In general, the results of this study could be utilized in breeding programs to maximize GSL levels and antioxidant properties in Brassica crops and for developing functional foods with enhanced health benefits.

19.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540215

RESUMO

The aim of this study was to associate FGFR4 rs1966265 and rs351855 variants with colorectal cancer (CRC) in a Mexican population and to perform in silico analysis. Genomic DNA from 412 healthy individuals and 475 CRC patients was analyzed. In silico analysis was performed using the PolyPhen-V2, GEPIA, GTEx, and Cytoscape platforms. The GA genotype dominant model (GAAA) of rs1966265 and the AA genotype dominant and recessive models of rs351855 were identified as CRC risk factors (p < 0.05). CRC patients aged ≥ 50 years at diagnosis who consumed alcohol had a higher incidence of the rs351855 GA genotype than the control group (p < 0.05). Associations were observed between the rs1966265 GA genotype and patients with rectal cancer and stage III-IV disease. The rs351855 AA genotype was a risk factor for partial chemotherapy response, and the GA + AA genotype for age ≥ 50 years at diagnosis and rectal cancer was associated with a partial response to chemotherapy (p < 0.05). The AA haplotype was associated with increased susceptibility to CRC. In silico analysis indicated that the rs351855 variant is likely pathogenic (score = 0.998). Genotypic expression analysis in blood samples showed statistically significant differences (p < 0.05). EFNA4, SLC3A2, and HNF1A share signaling pathways with FGFR4. Therefore, rs1966265 and rs351855 may be potential CRC risk factors.

20.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474419

RESUMO

Non-healing lesions in diabetic foot ulcers are a significant effect of poor angiogenesis. Epigenetic regulators, mainly lncRNA and miRNA, are recognized for their important roles in disease progression. We deciphered the regulation of lncRNA NEAT1 through the miR-146a-5p/mafG axis in the progression of DFU. A lowered expression of lncRNA NEAT1 was associated with dysregulated angiogenesis through the reduced expression of mafG, SDF-1α, and VEGF in chronic ulcer subjects compared to acute DFU. This was validated by silencing NEAT1 by SiRNA in the endothelial cells which resulted in the transcriptional repression of target genes. Our in silico analysis identified miR-146a-5p as a potential target of lncRNA NEAT1. Further, silencing NEAT1 led to an increase in the levels of miR-146a-5p in chronic DFU subjects. This research presents the role of the lncRNA NEAT1/miR-146a-5p/mafG axis in enhancing angiogenesis in DFU.


Assuntos
Pé Diabético , MicroRNAs , Neovascularização Fisiológica , RNA Longo não Codificante , Humanos , Pé Diabético/patologia , Células Endoteliais/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...